
V 4011 D

4 NAND-Gatter mit je 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: 1 (DIP 14)

Bezeichnung der Anschlüsse:

I11, I12	Eingänge Gatter 1	UDD	Betriebsspannung
<u>01</u>	Ausgang Gatter 1	I41, I42	Eingänge Gatter 4
$\overline{O2}$	Ausgang Gatter 2	$\overline{O4}$	Ausgang Gatter 4
I21, I22	Eingänge Gatter 2	03	Ausgang Gatter 3
USS	Bezugspotential	I31, I32	Eingänge Gatter 3

Wahrheitstabelle

In1	In2	Ōn
 L	L	Н
L	Н	н
Н	L	Н
Н	Н	L

(n = 1...4)

Der Schaltkreis V 4011 D enthält 4 NAND-Gatter mit je 2 Eingängen in positiver Logik. Sind bei einem Gatter einer der Eingänge oder beide Eingänge Low, so ist der Ausgang des Gatters High. Sind beide Eingänge High, so ist der Ausgang des Gatters Low.

Grenzwerte:

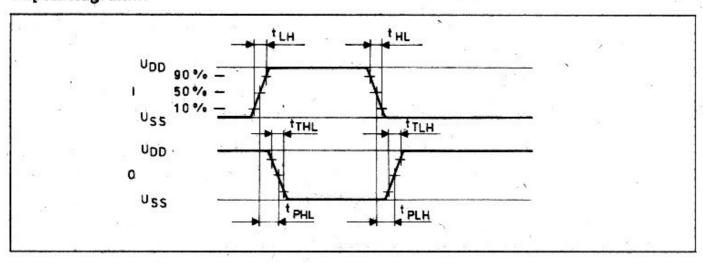
	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	U _{DD}	U _{SS} - 0,5	U _{SS} + 18	V
Eingangsspannung	UI	U _{SS} - 0,5	U _{DD} + 0,5	V
Ausgangsspannung	UO	U _{SS} - 0,5 U _{SS} - 0,5	U _{DD} + 0,5	V
Verlustleistung je Ausgangstransistor	P _V		100	m W
Gesamtverlustleistung	P _{tot}		300 ¹⁾ 150 ²⁾	mW mW
Lastkapazität je Ausgang	c_{L}		5	nF
Eingangsstrom	II		10	mA
Betriebstemperaturbereich	o a	-40	+85	°c
Lagerungstemperatur- bereich	østg	-55	+125	°C

Statische Kennwerte:

1) $\theta_{a} = -40...+70 \,^{\circ}\text{C}$; 2) $\theta_{a} = +85 \,^{\circ}\text{C}$

 $(U_{SS} = 0 \text{ V}, \theta_a = -40...+85 ^{\circ}\text{C}, \text{ falls nicht anders angegeben } U_{I} = U_{SS} \text{ bzw. } U_{DD}, |I_{O}| < 1 \text{ }\mu\text{A})$

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Betriebsspannung	U _{DD}		3	15	V
Eingangsspannung	U		0	UDD	V
Eingangsspannung High	UIH	U _{DD} = 5 V	3,5	a Tracks the	V
		U _{DD} = 10 V	7		V
		U _{DD} = 15 V	11		v
Eingangsspannung Low	UIL	$U_{DD} = 5 V$		1,5	· v
		U _{DD} = 10 V		3	v
		U _{DD} = 15 V		4	v
Eingangsreststrom	I _{IH}	. U _I = 15 V		1	μΑ
		U _{DD} = 15 V			
	I _{IL}	$U_I = 0 V$		1	μA
. /		U _{DD} = 15 V			
Ausgangsspannung Low	UOL	$U_{DD} = 515 \text{ V}$		0,05	V
Ausgangsspannung High	UOH	U _{DD} = 5 V	4,95	1	v
	J	U _{DD} = 10 V	9,95		V
		$U_{DD} = 15 \text{ V}$	14,95	, , ,	v
Ausgangsstrom Low	IOL	$U_{DD} = 5 \text{ V}$	0,4	,	mA
		$U_{OL} = 0.4 \text{ V}$			


Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Ausgangsstrom Low	I _{OL}	U _{DD} = 10 V	0,9		mA
*		$U_{OL} = 0.5 \text{ V}$			
	ů.	$U_{\mathrm{DD}} = 15 \text{ V}$	2,4		mA
		$U_{OL} = 1.5 \text{ V}$			
Ausgangsstrom High	I _{OH}	$U_{DD} = 5 V$	0,4		mA
		$U_{OH} = 4.6 \text{ V}$			
		$U_{DD} = 10 \text{ V}$	0,9		m A
1		$U_{OH} = 9.5 V$			
		$U_{DD} = 15 \text{ V}$	2,4		mA
		$U_{OH} = 13.5 \text{ V}$			
Eingangskapazität	C_{I}	$\vartheta_{a} = 25 ^{\circ}\text{C}$		7,5	pF
Statische Stromaufnahme	I_{DD}	$U_{DD} = 5 V$		7,5	μA
		$U_{\mathrm{DD}} = 10 \text{ V}$		15	μA
		$U_{\overline{DD}} = 15 \text{ V}$		30	μA

Dynamische Kennwerte:

$$(\theta_{a} = 25 \, {}^{\circ}\text{C}, U_{SS} = 0 \, \text{V}, C_{L} = 50 \, \text{pF}, U_{I} = U_{SS} \, \text{bzw}. U_{DD}, t_{LH} = t_{HL} = 20 \, \text{ns})$$

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Flankenübergangszeit der	t _{TLH}	U _{DD} = 5 V		200	ns
Ausgangssignale	tTHL	$U_{\mathrm{DD}} = 10 \text{ V}$		100	ns
		$U_{\mathrm{DD}} = 15 \text{ V}$		80	ns
Verzögerungszeit	tPLH	$U_{DD} = 5 \text{ V}$		150	ns
e e e	+ 1	$U_{\mathrm{DD}} = 10 \text{ V}$		75	ns
		$U_{DD} = 15 \text{ V}$		60	ns

Impuls diagramm

