

Integrierter 3-Digit-Analog/Digital-Wandler nach dem Dual-Slope-Verfahren (2-Flanken-Integration) zum Aufbau von dreistelligen Anzeigegeräten.

Bauform:

D TGL 26713

Masse:

≨ 1,5 g

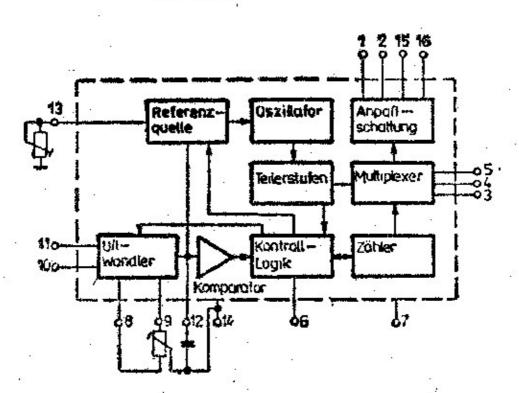
Typstandard: TGL 32014

Pinbelegu

1 — BCD-Datenausgang QB	9 - Nullpunktabgleich
2 — BCD-Datenausgang QA	10 Eingang "low"
3 — NSD-Digitausgang (folgendes Digit)	11 - Eingang "high"
 4 — MSD-Digitausgang (höchstwertiges Digit) 	12 — Integrationskondensator
5 — LSD-Digitausgang (letztes Digit)	13 - Endwertabgleich
6 - Hold-Geschwindigkeitsumschaltung	14 — Betriebsspannung UCC
7 — Masse	15 — BCD-Datenausgang QC
8 — Nullpunktabgleich	16 - BCD-Datenausgang QD
Grenzwerte	•

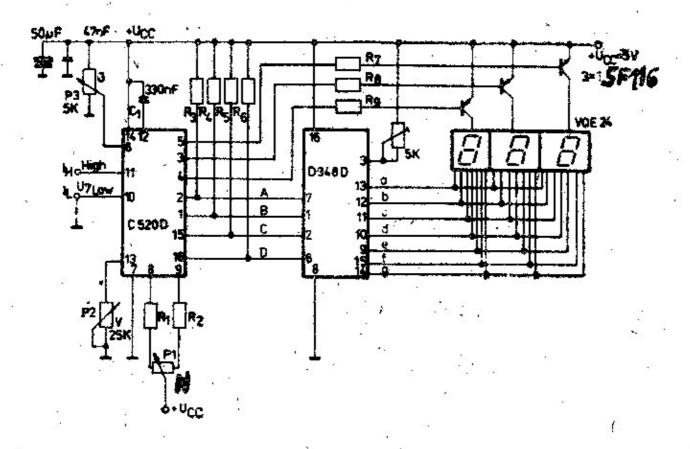
					min,	max.	
Betriebsspannung			$\mathbf{U}_{\mathbf{CC}}$:3	0	+7	V
Eingangsspannung am Anschluß 11			$v_{\rm IH}$		-15	+15	V
Eingangsspannung am Anschluß 10			$\mathbf{U}_{\mathbf{IL}}$		-15	+15	V
Spannung an den BCD- und	- 62		•				
Digit-Ausgängen			$U_{ m OH}$		0	+7	V
Spannung am Anschluß 6			Us		U	+7	V

Betriebsbedingungen


		\$1:1114	max.	
Betriebsspannung	$\mathbf{u}_{\mathbf{CC}}$	4,5	5,5	\mathbf{v}
Eingangsspannung zwischen den Auschlüssen 10 und 11	$\mathbf{u}_{10/11}$	-0,099	+0,999	v
Spannung für Geschwindigkeits-	10/11		•	
umschaltung - Normal-Betrieb	$\mathbf{u_6}$	0	0,4	V
Hold-Betrieb	85 ·	0,8	1,6	V
- High-speed-Betrieb		3,2	5,5	ν
Umgebungstemperaturbereich	$\vartheta_{\mathbf{a}}$	0	70	°C

Kennwerte ($\theta_a = 25$ °C $- 5$ K, $U_{CC} = 4.5$	5,5 V)			•	
	************	min,	typ.	max.	
Stromaufnahme bei	1_{CC}				
$U_{CC} = 5.5 \text{ V}, U_6 = 1.2 \text{ V}$			10	20	mA
Fehler der Gleichtakteingangs-	900000	2020 020			
spannung bei	$\mathbf{u}_{\mathbf{CM}}$	-1-1		+1+1	Digit
$U_{10}=U_{11}=U_{CM}$	3				
$U_{CM} = \pm 200 \text{mV}, U_{CC} = 5.5 \text{V}$					
L-Ausgangsspannung der BCD-	UOL			0,4	v
Codeausgänge bei	QL.	31			
$I_{OL} = 1.6 \text{ mA}, U_{CC} = 5.5 \text{ V}$					
Linearitätsfehler ¹)	FLin	*		±0,1%,±	1 Digit
1) Die Fehlermessung erfolgt nuch dem	Altoleich des	Nullmunkt	b bott se	es Endwer	tes (siehe

Die Fehlermessung erfolgt nach dem Abgleich des Nullpunktes und des Endwertes (siehe Anmerkung zur Meßschaltung) bei den angegebenen Einstellwerten.


Blockschaltung)

C20 A1 185

Einsatzschaltung

C20 A2 185

P1 - Nulipunktabgleich (N)

P2 — Endwertabgleich (V)

P3 — Geschwindigkeitsumschaltung

 $10 \text{ K} = R_1 + R_2 + P_1 = 50 \text{ kOhm}$

 $R_3...R_8 = 10 \text{ kOhm}$

 $R_7...R_9 = 0...1,0 \text{ kOhm}$

Bild 1: Einsatzschaltung des C 520 D in Verbindung mit LED-Anzeigeelementen mit gemeinsamer Anode

Vorzeichen- und Überlaufunsgabe

- negative Vorzeichen:

Die Ausgabe erfolgt im MSD als BCD-Codewert "HLHL" ▲ 10

- positiver Überlauf:

Die Ausgabe erfolgt in allen 3 Digits als BCD-Codewert "HLHH" ▲ 11

- negativer Überlauf:

Die Ausgabe erfolgt in allen 3 Digits als BCD-Codewert "HLHL" △ 10