

A 302 D Integrierter Schwellenspannungsschaltkreis

Der Schaltkreis arbeitet als ein von einer batteriespannungsproportionalen Schwellenspannung gesteuerter Schalter und ist für die Verschlußzeitensteuerung in elektronischen Kameras und ähnliche Anwendungen der industriellen Elektronik vorgesehen.

Bauform: T Masse: ≤ 0,5g TGL: 32537

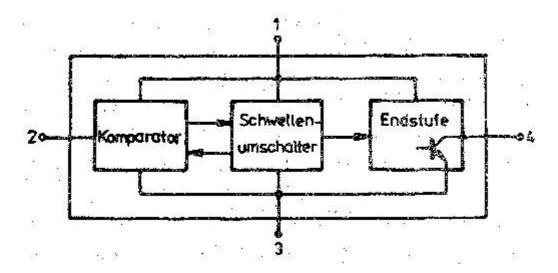
Anschlußbelegung

Betriebsspannung

Eingang 3 ---Masse 4 --Ausgang

Grenzwerte, gültig für den Betriebstemperaturbereich

Grenzwerte, guitig für den Detriebstein	per atur ber eich				
		min.		max.	
Betriebsspannunng	UCC	$2,3^{1}$)		6,3	V
Eingangsstrom	$I_{\rm I}$			1	mA
Ausgangslaststrom	I_{OL}			60	mA
Lastinduktivität	$L_{\rm L}$			2	Н
Verpolte Betriehsspannung					
$R_L \ge 100 \text{ Ohm}$					
$t \le 20 \text{ min}$	UCC			-5	V
$t \le 10s$	UCC			-6,3	V
Betriebstemperaturbereich²)	$ heta_a$	-10		+55	°C
Statische Kennwerte ($\theta_a = 25^{\circ}\text{C} \pm 5 \text{ K}$)					
D. C. L.		min.	typ.	max.	
Betriebsstrom	*			_	
$U_{CC} = 4V$, $U_I = 0V$	I_{CC}		2,7	5	mA
S_1 offen					
Schaltpegel "Io aus"	2-				
$R_L = 120 \text{ Ohm}, U_{CC} = 4 \text{ V}$	a_a^3)	0,57	0,587	0,6	
S ₁ geschlossen					
R1 = 120 Ohm, UCC =2,3 6V	2-				
$\theta_{\rm a} = -10 \dots +55 {}^{\circ}{\rm C}$	a_a^3)	0,559		0,612	
S ₁ geschlossen					
Schaltpegel "I ₀ ein"					
$R_L = 120 \text{ Ohm}, U_{CC} = 4 \text{ V}$	a_e^3)	0,5	0,518	0,535	
S ¹ geschlossen					
L-Eingangsstrom					
UCC = 4 V, UIL = 0 V, RL = 120 Ohm	$-I_{ m IL}$		1	25	nΑ
S ₁ geschlossen					
H-Eingangsstrom					
$U_{CC} = 4V$, $U_{IH} = 4V$, $RL = 120$ Ohm	I_{IH}		3	25	nΑ
Relative Schaltpegeländerung ⁴)					
$U_{cc} = 2,36 \text{ V}, \text{RL} = 120 \text{ Ohm}$	Δa_a			0,02	
$\theta_a = -10 +55^{\circ}C$	a_a				
L-Ausgangsspannung					
$U_{CC} = 4V$, $U_{IL} = 0V$, $I_{OL} = 40 \text{ mA}$	U_{OL}		225	300	mV
S ₁ offen					
Ausgangssperrstrom					
$U_{CC} = U_{IH} = U_{OH} = 6V$	I_{OH}		1,5	100	μΑ
S_1 offen					

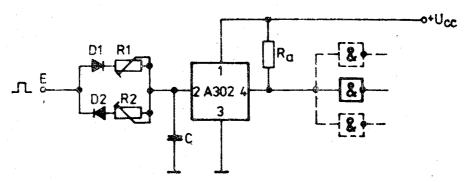

Dynamisehe Kennwerte (θ_a = 25 °C-- 5K, U_{CC} = 4V, U_{IL} = 0V, U_{IH} = 2,6V, Rechteckimpulse, $t_p = 10 \mu s$, $t_p/T = 0.2$ $R_L = 120 \text{ Ohm}$, $Z_O = 50 \text{ Ohm}$)

Ausschaltverzögerungszeit	$\mathbf{t}_{\mathrm{v}1}$	1,3	μs
Einschaltverzögerungszeit	t_{v2}	0.9	μs
Anstiegszeit des Ausgangsimpuises	$t_{\rm r}$	45	ns
Abfallzeit des Ausgangsimpulses	\mathbf{t}_{f}	45	ns

¹) bei Unterschreiten Funktion nicht gewährleistet. ²)Die Schaltkreise sind im Betriebstemperaturbereich unter Berücksichtigung der Temperaturabhängigkeit der Kenngrößen für den vorgesehenen Anwendungsfall einsetzbar.

³)bezogen auf Betriebsspannung

⁴) a_a hei $U_{CC} = 4V$ und $\theta_a = 25$ °C



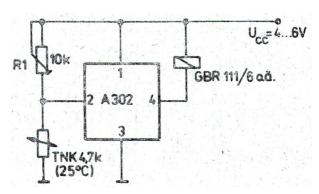
Anwendungsbeispiele

1. Impulsverzögerung in TTL Schaltungen

Der Schwellwertschaltkreis A 302 D ist auf Grund seiner Betriebsspannung sowie seines Eingangs-, Ausgangs- und Übertragungsverhaltens für den Einsatz in TTL-Schaltungen geeignet, wo er allgemein zur Erhöhung des Eingangswiderstandes von TTL-Gattern verwendet werden Kann. Es können Zeitglieder, Monoflop u. a im Sekundenbereich realisiert werden. Das Bild zeigt die Prinzipschaltung einer Impulsverzögerung der negativen bzw. positiven Flanke.

A 302 A5 G85

Fiir Ra = 1 kOhm besitzt der A 302 D einen Ausgangslastvaktor von 35. Der statische Störspannungsabstand für beide Ausgangszustände ergibt sich zu $\geq 0,5\,$ V. Dimensionierungshinweise


 $t_r = 0.87 * R_1 * C$

 $t_f = 0.65 * R_2 * C$

2. Temperaturregelschaltung

Wird die durch das Spannungsteilerverhältnis R_1/R_2 bestimmte Eingangsspannung an Anschluß 2 kleiner als ca. 0,5 U $_1$ (Temperaturerhöhung), so fällt Re 1 ab. Die Funktion der Schaltung ist weitestgehend unabhängig von der Betriehsspannung, so daß diese nicht stabilisiert zu werden braucht. Die Schalthysterese beträgt ca. 3 °C.

A 302 A6 G85

