A 110 D, B 110 D Komparatoren

Integrierte bipolare Komparatoren in einem 14poligen DIL-Plastgehäuse. Sie besitzen einen Differenzeingang und einen TTL-kompatiblen niederohmigen Ausgang.

Bauform:

C 21.2.1.2.14 nach TGL 26713

Masse:

≤ 1 g

Typstandard: TGL 28874

Anschlußbelegung

2 — 0 Volt

3 — Nicht invertierender Eingang

4 — Invertierender Eingang

6 - Negative Betriebsspannung

9 — Ausgang

11 - Positive Betriebsspannung

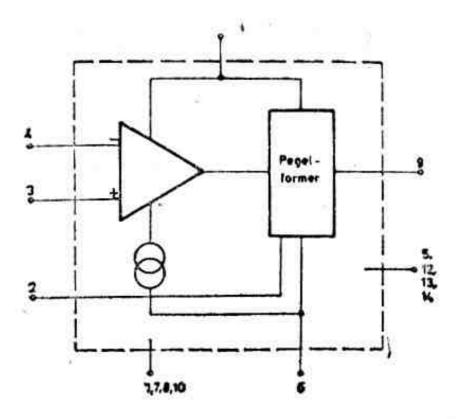
1, 5, 7, 8, 10, 12, 13, 14 - nicht belegt

Grenzwerte, gültig für den Betriebstemperaturbereich

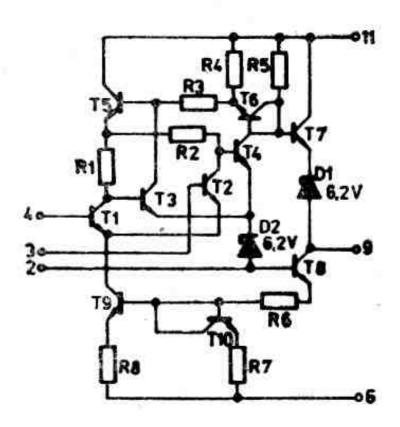
945V WV		min.	max.	
Betriebsspannung	UCCI		+14	V
	U_{CC2}	-7		V
Gleichtakteingangsspannung	UIC	-7	+7	V
Differenzeingangsspannung	U_{ID}	-5	+5	V
Ausgangsstrom	I_{O}		10	mA
Gesamtverlustleistung	Ptot		300	mW
Betriebstemperaturbereich [†]) A 110	9 _a	0	+70	$^{\circ}\mathrm{C}$
B 110	$\boldsymbol{s}_{\mathrm{a}}^{\mathrm{n}}$	-25	+85	°C
Lagerungstemperaturbereich	9 _{sig}	-55	+125	°C

¹⁾ Die Schaltkreise sind im Betriebstemperaturbereich unter Berücksichtigung der Temperatur+ abhängigkeit der Kenngrößen für den vorgesehenen Anwendungsfall einsetzbar.

Statische Kennwerte	(9 _a =	25 °C ± 5 K,	$U_{CC1} = 0$	12 V, $U_{CC2} = $	-6 V)
---------------------	-------------------	--------------	---------------	--------------------	-------


S			min.	typ.	max.	
Eingangsoffsetspannung						
$R_S = 100 \text{ Ohm}, U_O = 1.4 \text{ V}$	A 110	U_{IO}		1,2	7,5	mV
	B 110	$\mathbf{U}_{\mathbf{IO}}$		1,0	5	mV
$R_S = 100 \text{ Ohm}, \vartheta_a = 0+70 ^{\circ}\text{C}$		U_{IO}	100		10	mV .
$R_S = 100 \text{ Ohm}, \vartheta_a = -25+85$	°C				CHETTAS	
	B 110	U_{IO}		=	10	mV
Temperaturkoeffizient der Eingar offsetspannung	igs-	A.T. #				
$\theta_{a1} = -25 ^{\circ}\text{C}, \theta_{a2} = +85 ^{\circ}\text{C}$	B 110	ΔU_{IO}		2,9	20	$\mu V/K$
THE COURSE SERVICE OF SERVICE ASSET	5850V81508.1	$\triangle \theta_{\mathbf{a}}$	9	115.55		(Constant)
Eingangsoffsetstrom	20.	W 98W				0
$U_O = 1.4 \text{ V}$	A 110	IIO		1,5	15	μ A
· .	B 110			1,0	5	μ A
$\theta_a = 0+70 ^{\circ}\text{C}$	A 110	IIO		.5-2-3	20	μ A.
$\vartheta_{a}^{a} = -2585 ^{\circ}\text{C}$	B 110	lio			20	μA
Eingangsbasisstrom		10			3	0)(25
$U_{\rm O} = 1.4 \rm V$	A 110	I _{IB}		18	100	μ A
0 .,	B 110	IB		11	25	μ A
$\theta_a = 0 + 70 ^{\circ}\text{C}$	A 110	IB	ST - ST		150	μA
$\vartheta_a = -25+85 ^{\circ}\text{C}$	B 110	A			150	μ A
a 22 (52 C	2110	1JB			2.70	4.6
Ausgangswiderstand					77	
$U_O = 1.4 V$	A 110	Ro		190		Olim
p e a	B 110	Ro	9	160		Ohm
High-Ausgangsspannung						
$U_{ID} = 10 \text{ mV}, I_{OH} = -5 \text{ mA}$	A 110	UOH	2.5	2,9	330	V
ib , on	B 110	UOH	2,5 2,5	3.0		V
$U_{ID} = 2.5 \text{ V}, I_{OH} = -5 \text{ mA}$	A 110	UOH	7.	2,6		v
1D OH	B 110	UOH	124	2,8		v
Low-Ausgangsspannung		On		Difference:		7.55
$U_{\text{ID}} = 10 \text{ mV}, I_{\text{OL}} = 1.6 \text{ mA}$	A 110	H		-0,41	0	V
$L_{\text{loc}} = 10 \text{mV}$ $L_{\text{loc}} = 2 \text{mA}$	B 110	UOL		-0,36	0	32
$U_{ID} = 10 \text{ mV}, I_{OL} = 2 \text{ mA}$ $U_{ID} = 2.5 \text{ V}, I_{OL} = 1.6 \text{ mA}$	A 110	UOL		-0,42	v	v
$U_{\text{FD}} = 2.5 \text{ V} \cdot \text{I}_{\text{CD}} = 2 \text{ mA}$	B 110	- UOL		-0,38		v
$U_{ID} = 2.5 \text{ V}, I_{OL} = 2 \text{ mA}$	11 110	UOL		-0,50), 46 37

A 110 D, B 110 D


vanish and the same has an a			min.	typ.	.max.	
Spannungsverstärkung						
$\triangle U_O = 2 \text{ V}, R_S = 100 \text{ Ohm}$	A 110	AUoff	750	1500		
$R_L \rightarrow \infty$	B 110	AUoff	1000	1700		
$\vartheta_a = 70 ^{\circ}\text{C}$	A 110	AAoff		1350		
$\vartheta_a = 85 ^{\circ}\text{C}$	B 110	AUoff		1450		
Gleichtaktunterdrückung						
$R_S = 100 \text{ Ohm}, \Delta U_1 = 10 \text{ V}$	A 110	CMR	70	100		dB
3	B 110	CMR	70	105		dB
Betriebsstrom						
$U_O = 0 V$	A 110	I _{CC1}	3	5,0	9	mA
200 00		I _{CC2}	2	3,4	7	mA
	B 110	I _{CC1}	2 3 2	5,5	7 9 7	mA
	9	I _{CC2}	2	3,7	7	mA.
Dynamische Kennwerte ($\vartheta_a = 2$	25 °C — 5 K,	U _{CC1} = 1	12 V, U _C	c2 = -6 \	/)	
	*	COL	min.	typ.	max.	
Verzögerungszeit				90.041		
$\Delta U_{ID} = 100 \mathrm{mA}, \ddot{\mathrm{u}} = 5 \mathrm{mV}$						
$R_L = 2 \text{ kOhm}$	A 110	t _{pLH}	5	53		ns
(-)	A 110	tpHL.		44		ns
	B 110	t _{pLH}		55		ns
	B 110	toHI.		47		'ns

Blockschaltung

A/B 10 A1 G85

A/B 10 A2 G85

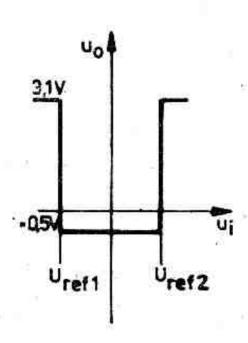
Applikationshinweise

Die Zuleitungen, besonders die Erdleitung, sollten so niedrige Impedanzen wie möglich aufweisen.

Es ist zweckmäßig, die Versorgungsleitungen $+U_{CC}$ und $-U_{CC}$ direkt am Schaltkreis mit einem HF-Kondensator von $0.01...0.1 \,\mu\text{F}$ und die Versorgungsleitungen für die Platine mit einem Kondensator von $10 \,\mu\text{F}$ zur Ableitung von Störungen abzublocken.

Die Quellwiderstände der Signal- und Referenzquellen sollten gleich groß und kleiner als 200 Ohm sein, um die thermische Drift und die Offsetspannung gering zu halten.

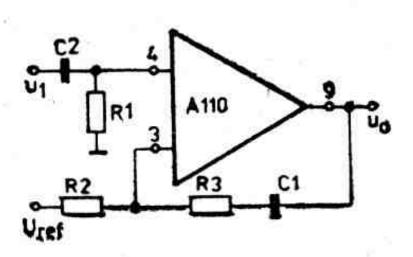

Eine Parallelschaltung von maximal 4 Ausgängen ist zulässig.

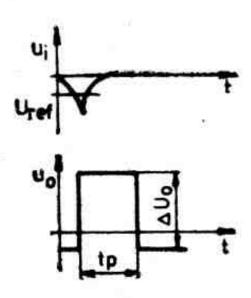

Der Ausgang des A 110 D / B 110 D ist TTL-kompatibel und mit einem fan-out von 1 belastbar.

Anwendungsbeispiele

1. Fensterdiskriminator

A/B 10 A3 G85



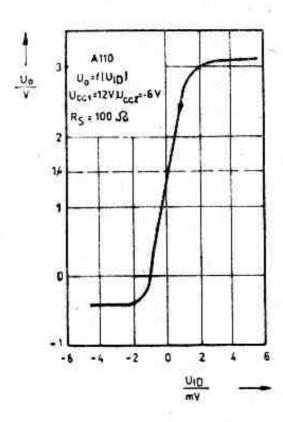

Bei Meßautomaten tritt oft das Problem auf, Meßwerte, die zwischen einem oberen und einem unteren Grenzwert liegen, als gut, alle außerhalb der beiden Grenzen liegenden Werte als schlecht zu bewerten. Eine elegante Lösung dieses Problems ist mit einem Fensterdiskriminator möglich.

Mit der dargestellten einfachen Grundschaltung läßt sich eine Funktion der Ausgangsspannung erreichen, die ein Fenster zwischen den beiden Bezugsspannungen Uref1 und Uref2 bildet. Die untere Grenze (Uref1) wird an den nichtinvertierenden Eingang des einen A 110 D, die obere Grenze (Uref2) an den invertierenden Eingang des anderen A 110 D gelegt. Die beiden übrigen Eingänge werden zusammengeschaltet und mit der zu vergleichenden Spannung beaufschlagt.

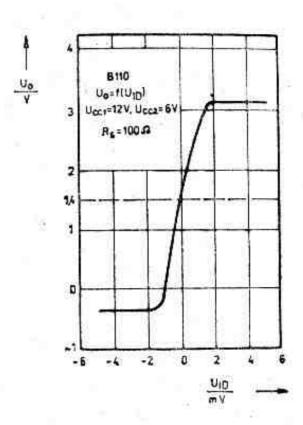
2. Monostabiler Multivibrator

A/B 10 A4 G85

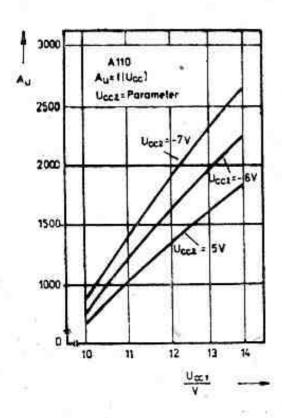
Die Schaltung wird mit negativen Impulsen am Eingang A getriggert. Der Schwellwert wird an B vorgegeben. Mit C1, R2 und R3 läßt sich die Ausgangsimpulsdauer tp einstellen:


$$t_p = (R2 + R3) C1 \cdot \log \frac{\Delta U_O R2}{U_{ref} (R2 + R3)}$$

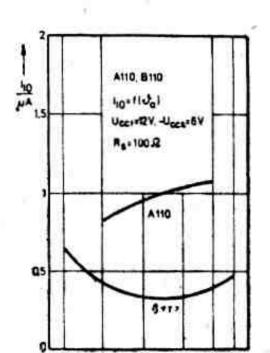
Durch Einsatz des A 110 D ist die Ansprechgenauigkeit des monostabilen Multivibrators sehr hoch (± 10 mV in einem Bereich von ± 5 V).

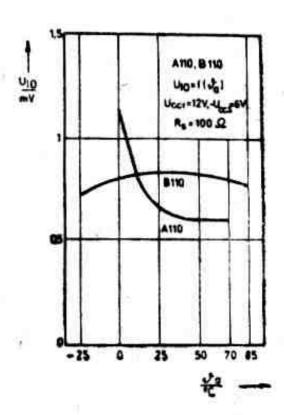

Die Schaltung ist daher für monostabile Multivibratoren mit hohen Genauigkeitsforderungen universell anwendbar,

Abhängigkeiten

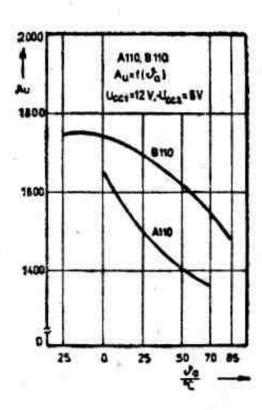

A/B 10 A5 G85 K

A/B 10 A6 G85 K

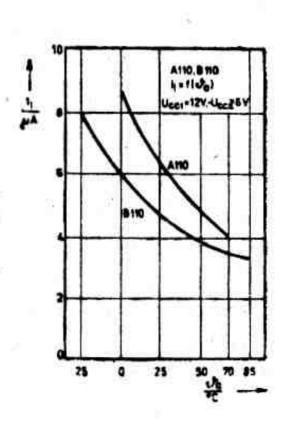

A/B 10 A7 G85 K


A/B 10 A8 G85 K

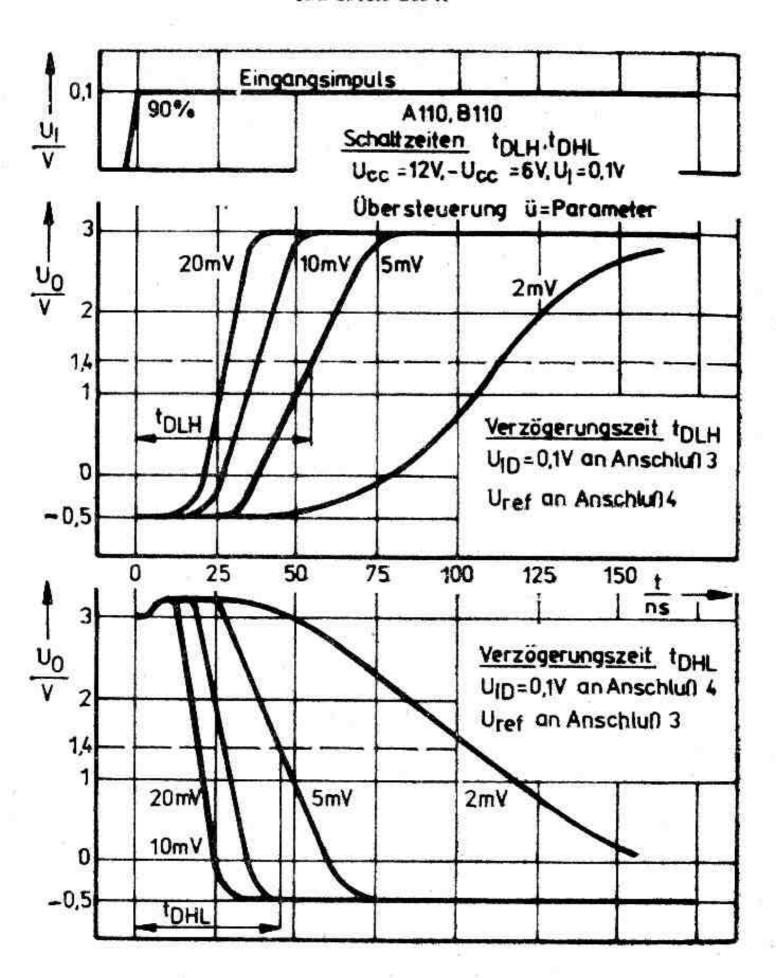
A/B 10 A9 G85 K



A/B 10 A10 G85 K



A/B 10 A11 G85 K


* -

A/B 10 A12 G85 K

A/B 10 A13 G85 K

