CUTT

A 109 D, B 109 D Operationsverstärker (nicht für Neuentwicklungen)

Integrierte bipolare hochverstärkende Operationsverstärker in DIL-Plastgehäuse mit kleinen Offsetgrößen, großem Eingangswiderstand und großer Ausgangsamplitude für universellen Einsatz.

Bauform:

C 21.2.1.2.14 nach TGL 26713

Masse:

≦1g

Typstandard: TGL 28873

Anschlußbelegung

3 — Eingangsfrequenzkompensation	 9 — Ausgangsfrequenzkompensation
4 — invertierender Eingang	10 — Ausgang
5 — nichtinvertierender Eingang	11 — positive Betriebsspannung
6 - negative Retriebsspanning	12 - Fingangefrequenzkompensation

1, 2, 7, 8, 13, 14 - nicht belegt

Grenzwerte, gültig für den Betriebstemperaturbereich

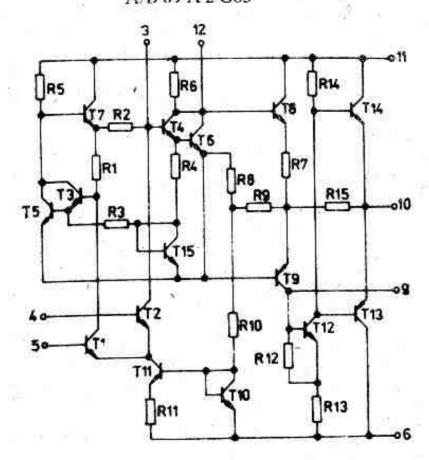
		min.	max.	
Betriebsspannung	$\mathbf{u}_{\mathrm{CC1}}$		+18	v
	$\mathbf{U}_{\mathbf{CC2}}$	-18		V
Gleichtakteingangsspannung	$v_{\rm IC}$	-10	+10	v
Differenzeingangsspannung	$v_{ m ID}$	-5	+5	V
Dauer des Kurzschlußausgangsstromes (3a = 25°C)	*K		5	s
Wärmewiderstand	Rihja		150	K/W
Gesamtverlustleistung	Ptot		300	mW
Betriebstemperaturbereich	0.000			
A 109 D	. Pa	0	+70	°C
B109D	ు	-25	+85	°C
Lagerungstemperaturbereich	Sstg	-55	+125	°C

Statische Kennwerte ($\theta_a = 25 ^{\circ}\text{C} - 5 ^{\circ}\text{K}, ^{\circ}\text{U}_{CC}$	1 - CC2	min.	typ.	max.		
Eingangsoffsetspannung		•				
$R_S = 100 \text{ Ohm}, U_{CC} = \pm 15 \text{ V}$	UIO		1.0	7,5	mV	
$R_S^3 = 10 \text{ kOhm}, U_{CC} = \pm 15 \text{ V}$	v_{10}		1,2		mV '	
$R_S = 100 \text{ Ohm}, U_C = \pm 15 \text{ V}$	$\mathbf{u}_{\mathbf{IO}}$			1.7	9	
$\vartheta_a^{\circ} = 0 + 70 ^{\circ}\text{C}$				10	mV	
Eingangsoffsetstrom				21		
$U_{CC} = \pm 15 \text{ V}$	1_{1O}		35	500	nA	
$U_{CC} = \pm 15 \text{ V}$	10				7.	
$\vartheta_a = 0+70 ^{\circ}\text{C}$	I_{IO}			750	nA.	
Eingangsbasisstrom	10					
	I_{IB}		350	1500	nA.	
$U_{CC} = \pm 15 \text{ V}$ $U_{CC} = \pm 15 \text{ V}$	-115					
$U_{CC} = \pm 15 \text{ V}$ $\vartheta_a = 0+70 \text{ °C}$	1_{IB}			2000	nA	
75 57560	115					
Betriebsspannungsunterdrückung R _S = 100 Ohm, △U _{CC1} + 1 V						
D	SVR		100		$\mu V/V$	
$U_{CC} = \pm 9 \text{ V}$	SVR		45	200	$\mu V/V$	
$U_{CC} = \pm 15 \text{ V}$	SVIC	50	43	200	F-17.1	
$R_S = 100 \text{ Ohm}, \Delta U_{CC2} = -1 \text{ V}$	SVR		60		$\mu V/V$	
$U_{CC} = \pm 9 V$			25	200	$\mu V/V$	
$U_{CC} = \pm 15 \mathrm{V}$	SVR		4.4	200	H ****	
$R_S = 10 \text{ kOhm}, \triangle U_{CCI} = 1 \text{ V}$	SVR		120		$\mu V/V$	
$U_{CC} = \pm 9 \text{ V}$	SVR		50		$\mu V/V$	
$U_{CC} = \pm 15 \text{ V}$	SVK		50		P1. 1	
$R_S = 10 \text{ kOhm}, \Delta U_{CC2} = -1 \text{ V}$	SVR		65		$\mu V/V$	
$U_{CC} = \pm 9 \text{ V}$	SVR		20		$\mu V/V$	
$U_{CC} = \pm 15 \mathrm{V}$	SYL		24.17		F 17 1	
Ausgangsspitzenspannung	75.7		77.7		37	
$R_L = 2 \text{ kOhm}, U_{CC} = \pm 9 \text{ V}$	$\mathbf{u}_{\mathbf{O}1}$		7,3		77	
	-U _{O2}	40	7.7		X	
$R_L = 2 \text{ kOhm}, U_{CC} = \pm 15 \text{ V}$	UOI	10	13,1		77	
TODO I WANDANING BY SHIPPY II	-U _{O2}	10	13,4		V V V V V V	
$R_L = 10 \text{ kOhm}, U_{CC} = \pm 9 \text{ V}$	v_{O1}		8,0		37	
The second second	$-U_{O2}$	12	8,1		V	
$R_L = 10 \text{ kOhm}, U_{CC} = \pm 15 \text{ V}$	UOI	-12	14,0		¥	
A 250	-UO2	12	13,6			
Gleichtakteingangsspannung	$\pm U_{\mathbf{I}}$	8			V	
Gleichtaktunterdrückung						
	CMR.	65	110		dB	
$R_S = 100 \text{ Ohm}, U_{CC} = \pm 15 \text{ V}$		200	2.4.0			

W W	8	min.	typ.	max.	
Großsignalverstärkung		(1)			
$R_1 = 2 \text{ kOhm}$					52.11
$\Delta U_{\rm O} = \pm 10 \text{V}, U_{\rm CC} = \pm 15 \text{V}$	A _{Uoff}	15	40,0		- 10 ³
$R_I = 2 \text{ kOhm}, U_O = \pm 10 \text{ V}$					12.1000 <u>12.</u> 11.
$U_{CC} = \pm 15 \text{ V}, \vartheta_a = 0+70 ^{\circ}\text{C}$	AUoff	12			· 103
Betriebsstrom					
$U_{CC} = \pm 15 \text{ V}$	I _{CC}		3,7		mA
Eingangswiderstand	_ 6			23	345
$U_{CC} = \pm 15 \text{ V}$	R_{I}	50	370		kOhn
Eigenleistungsaufnahme					
$U_{CC} = \pm 15 \text{ V}$	P_{CC}			200	mW
					¥:

Dynamische Kennwerte ($\theta_a = 25 \,^{\circ}\text{C} - 5 \,\text{K}$, $U_{CC1} = -U_{CC2} = 15 \,\text{V}$)

200	G .	min.	typ.	max.
Anstiegszeit				10
$R_L = 2 \text{ kOhm}, C_L = 0$	t _r		0,60	μ s
Überschwingen	$\Delta U_{\mathbf{O}}$			
$U_i = 20 \text{ mV}, C_L = 100 \text{ pF}$	200		3	%
STATE OF SECRETARIAN OF	$\mathbf{U}_{\mathbf{O}}$			
Eingangsrauschspannung				
$R_S = 100 \text{ Ohm}, f_O = 15 \text{ kHz}$	$\mathbf{u_n}$		1,1	μV
$R_S = 10 \text{ kOhm}, f_O = 15 \text{ kHz}$	$\mathbf{U_n}^n$		3,5	μ V


Blockschaltung

A/B 09 A 1G 85

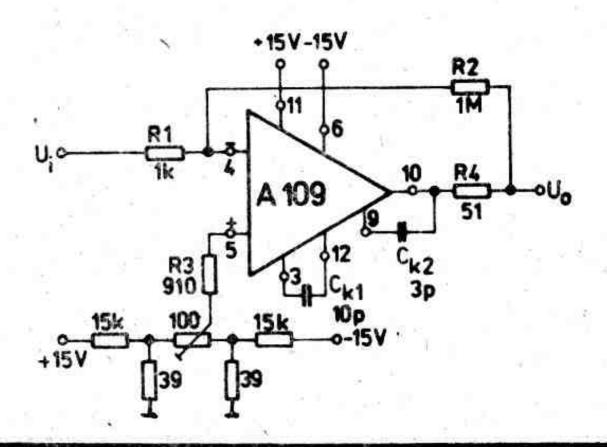
Innenschaltung

A/B 09 A 2 G85

Applikationshinweise

Es ist zweckmäßig, die positive und die negative Versorgungsspannung U_{CC1} und U_{CC2} mit je einem Kondensator von $0.01~\mu\text{F}...0.1~\mu\text{F}$ gegen 0 Volt abzublocken.

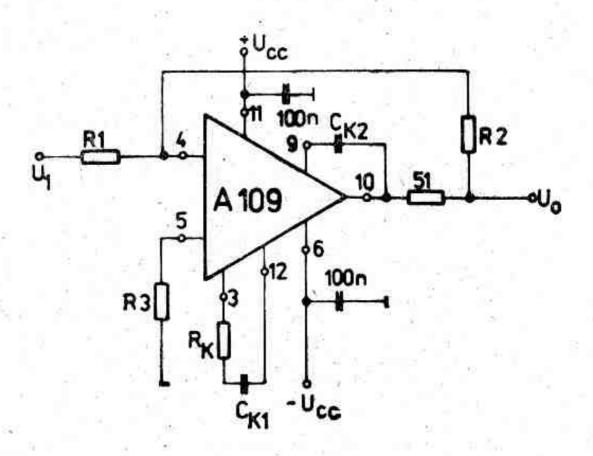
Zur Vermeidung einer eventuellen Schwingneigung in der positiven Halbwelle der Ausgangsspannung ist die Einschaltung eines Widerstandes von 51 Ohm in den Ausgang erforderlich.


Es ist zu beachten, daß der Schaltkreis auch beim Betrieb in offener Schleife frequenzkompensiert. Dazu sind 2 Kondensatoren mit den Werten $C_{k1} = 10 \, \text{pF}$ und $C_{k2} = 3 \, \text{pF}$ erforderlich.

Beim Betrieb in geschlossener Schleife richten sich die Werte für die Frequenzkompensationsglieder nach der geschlossenen Schleifenverstärkung /AU/.

/AU/ dB	Ck1 pF	R _k kOhm	Ck2
60	10	0	3
50	27	1.5	3 .
40	100	1,5	3
30	270	1,5	10
20	470	1,5	20
10	2700	1,5	100
0	4700	1,5	200

Offsetkompensation


A/B 09 A3 G85

Infolge geringer Unsymmetrien innerhalb des Operationsverstärkers, sowie auf Grund der geringfügig unterschiedlichen Spannungsabfälle, die die Eingangsströme des Verstärkers an den
vor die beiden Eingänge geschalteten Widerstände hervorrufen, ist die Ausgangsspannung nicht
Null, wenn die Eingangsspannung zu Null gemacht wird. Diese Tatsache kann sehr störend
wirken, besonders bei höhen Verstärkungen. Deshalb sind Maßnahmen zur Offsetkompensation
erforderlich, die z. B. durch Gegenschaltung seiner kleinen Kompensationsspannung realisiert
werden können.

Frequenzkompensation des A 109 D. B 109 D und Beschaltung als invertierender Verstärker:

A/B 09 A4 G85

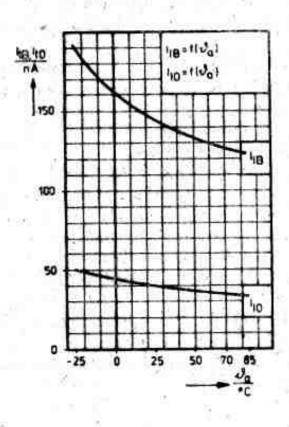
Für Verstärkungen /AU/ > 30 dB ist eine Offsetkompensation vorzusehen, um die Ausgangsruhespannung auf 0 Volt bei 0 Volt Eingangsspannung einstellen zu können.

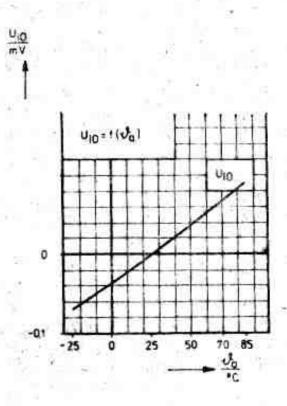
Zur Erzielung einer minimalen Temperaturdrift müssen die von den Anschlüssen des invertierenden bzw. des nicht invertierenden Eingangs in die Schaltung hineingemessenen Wirk-widerstände gleich groß sein. Daraus resultiert die Bedingung $R_1 = R_1//R_2$.

Beim Betrieb als Spannungsfolger kommt der Einhaltung des maximalen Gleichspannungsbereichs eine besondere Bedeutung zu. Der maximale Gleichtakteingangsspannungsbereich darf auch nicht kurzzeitig überschritten werden, da es sonst zum "latch up" (Festfahren oder Hängenbleiben der Ausgangsspannung) kommen kann.

Es ist deshalb beim Betrieb des A 109 D bzw. B 109 D als Spannungsfolger in die Rückführung vom Ausgang auf den invertierenden Eingang ein Widerstand von 10 kOhm einzuschalten.

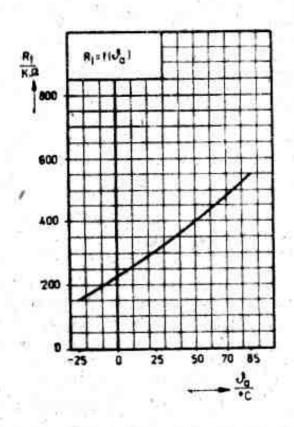
Sofern in der angewendeten Schaltung die Möglichkeit besteht, daß die Spannungsdifferenz direkt zwischen dem invertierenden und dem nichtinvertierenden Eingang größer als 5 V werden kann, ist ein besonderer Schutz für die Eingänge vorzusehen.

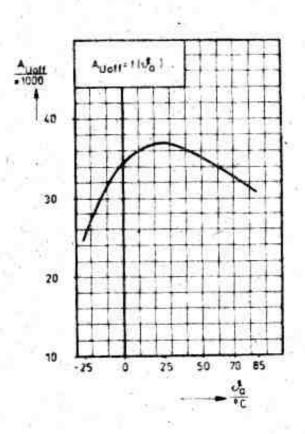

Dieser Schutz kann entweder aus 2 in Reihe liegenden, gegensinnig geschalteten Z-Dioden oder mit Hilfe zweier antiparallel geschalteter, schneller Si-Dioden erfolgen.


Soll der A 109 D bzw. B 109 D eine Logik ansteuern, so ist zwischen dem Ausgang des Schaltkreises und dem Eingang der logischen Schaltung eine Logikpegelangleichung vorzunehmen.

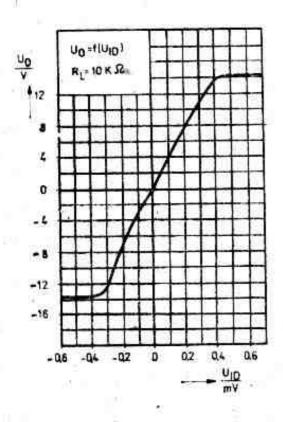
Zur Ansteuerung eines TTL-Gattereingangs genügt dazu die Einschaltung eines Widerstandes von 2 kOhm zwischen dem Ausgang des A 109 D bzw. B 109 D und dem Gattereingang sowie die Anschaltung zweier Klemmdioden an den gatterseitigen Anschluß des Widerstandes; eine Diode von 0 Volt (Anode) zum Widerstand, die andere Diode vom Widerstand (Anode) zu einer positiven Hilfsspannung von 2,8 V.

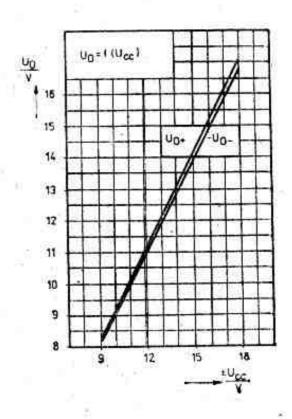
Bei Brettschaltungsaufbauten mit dem A 109 D bzw. B 109 D kann zum Schutz gegen unbeabsichtigte Verpolung der Betriebsspannungen vor die Anschlüsse U_{CC1} und U_{CC2} je eine Diode geschaltet werden, die bei versehentlich falscher Polung sperren und die Zerstörung des Schaltkreises verhindern. A/B 09 A5 G85 K


A/B 09 A6 G85 K

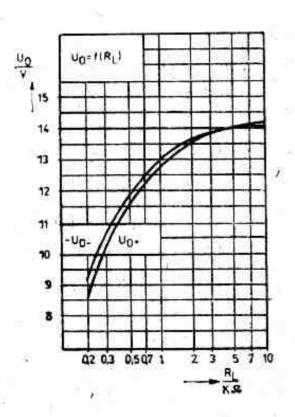


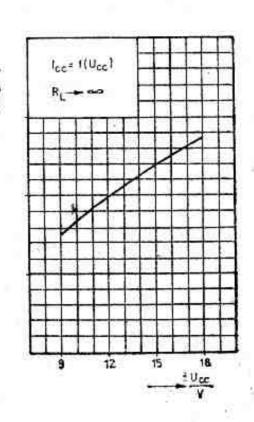
A/B 09 A7 G85 K

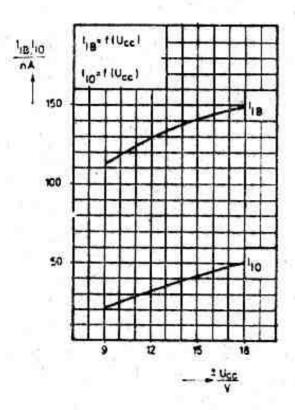

A/B 09 A8 G85 K



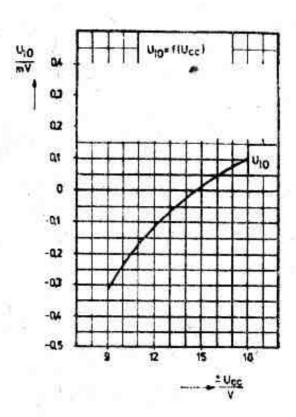
A/B 09 A9 G85 K

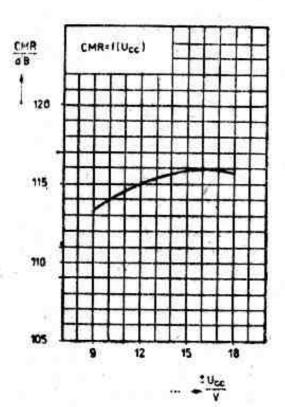

A/B 09 A10 G85 K

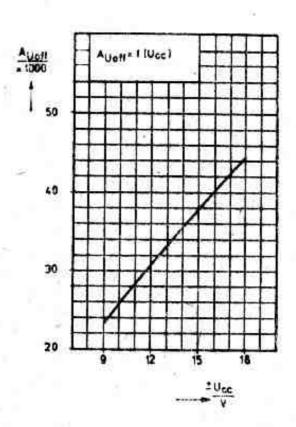


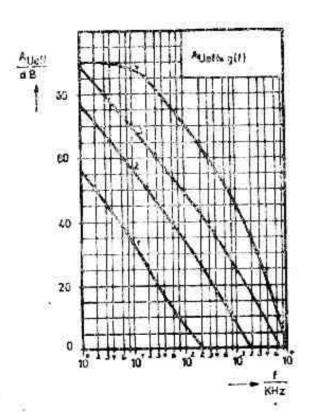

A/B 09 A11 G85 K

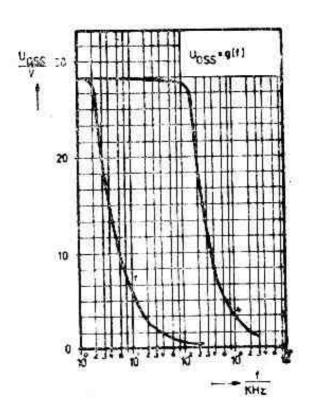
A/B 09 A12 G85 K

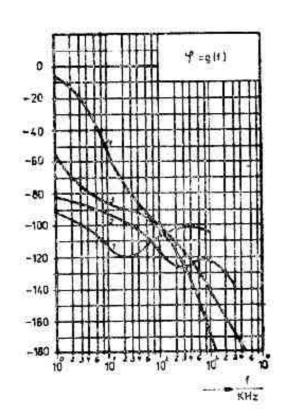



A/B 09 A13 G85 K


A/B 09 A14 G85 K


A/B 09 A15 G85 K


A/B 09 A16 G85 IC


A/B 09 A17 G85 K

A/B 09 A18 G85 K

A/B 09 A19 G85-K

- 1) $C_{k1} = 4700 \text{ pF}$; $R_k = 1.5 \text{ kOhn}$ $C_{k2} = 180 \text{ pF}$
- 2) $C_{k1} = 470 \text{ pF}$; $R_k = 1.5 \text{ kOhm}$ $C_{k2} = 18 \text{ pF}$
- ³) $C_{k1} = 100 \text{ pF}$; $R_k = 1,5 \text{ kOhm}$ $C_{k2} = 3 \text{ pF}$
- 4) $C_{k1} = 10 \text{ pF}; R_k = 0$ $C_{k2} = 3 \text{ pF}$